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1 Introduction

The goal of this project is to investigate the non-linear behavior of resistances in an inductance box,
a common tool in electronic laboratories. The inductance box contains multiple inductive elements
arranged in 7 columns and 4 rows, with switches to activate each element individually. When
measuring the resistance, it’s been observed that the total resistance of the activated inductances
does not add up as expected, revealing a non-linear effect.

This project aims to analyze the resistance behavior and develop both statistical and physical
models to explain these effects and predict the resistance for any combination of activated switches.
Additionally, we will explore the relationship between the statistical and physical models. As the
next step, we will test another inductance box and compare the results.
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Figure 1: Mindmap to represent the main ideas of this project

Several factors can affect the experiment’s outcomes:

• Room Temperature: Environmental conditions may influence resistance measurements.

• Multimeter Stability: The accuracy of the measuring device is key to reliable data.

• Switch Activation Method: How switches are turned on or off can introduce variability in
the measurements.

• Specification of the Inductance Box: Differences in the characteristics of the inductance box
can lead to variations in the experiment. It is important to account for the specific box being
used.

To check these influences, we repeated the same switch combinations on different days. The
results varied by less than the offset, 0.7 Ohms, which is much smaller than the measured resistances
(tens of Ohms), so these factors can be ignored.

2 Individual switches

The first step in the scheme reconstruction process is the measurement of individual resistances
(turning on switches one by one). The following values were obtained:
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4 µH 40 µH 0.4 mH 4 mH 40 mH 0.4 H 4 H
<1 Ω <1 Ω <1 Ω 3.50 Ω 4.10 Ω 33.20 Ω 67.10 Ω
3 µH 30 µH 0.3 mH 3 mH 30 mH 0.3 H 3 H
<1 Ω <1 Ω <1 Ω 2.80 Ω 3.50 Ω 28.20 Ω 56.70 Ω
2 µH 20 µH 0.2 mH 2 mH 20 mH 0.2 H 2 H
<1 Ω <1 Ω <1 Ω 1.90 Ω 3.20 Ω 16.80 Ω 45.40 Ω
1 µH 10 µH 0.1 mH 1 mH 10 mH 0.1 H 1 H
<1 Ω <1 Ω <1 Ω 1.50 Ω 2.30 Ω 11.50 Ω 31.30 Ω

Table 1: The table presents the inductance values for each of the switches, as well as the measured
resistances when each switch is individually activated.

The measurement of resistances for switches below 1 mH is not useful, as the measurement
error (around 0.2–0.3 Ohms) and the offset, 0.7 Ohms (offset refers to the baseline resistance
measurement when all switches are completely turned off). The use of small resistances in circuit
reconstruction will result in significant errors. On the contrary, excluding them from consideration
will not cause any problems for the device model creation.

3 System of two switches

Below are the tables showing the resistances in Ohms for the two-switch combinations. When
comparing these values with individual switch measurements, it is important to remember that
each measurement includes both the actual resistance and an offset. Therefore, 0.7 Ohms must be
subtracted from each measurement to account for the offset.

0 1 H 2 H 3 H 4 H
0

1 H 31,30
2 H 45,40 56,80
3 H 56,70 87,60 101,50
4 H 67,10 97,80 112,20 93,60

0 0.1 H 0.2 H 0.3 H 0.4 H
0

0.1 H 11,50
0.2 H 16,80 21,10
0.3 H 28,20 39,00 44,30
0.4 H 33,20 44,00 49,50 45,80

0 10 mH 20 mH 30 mH 40 mH
0

10 mH 2,30
20 mH 3,20 3,70
30 mH 3,50 5,10 6,00
40 mH 4,10 5,70 6,50 5,40

0 1 mH 2 mH 3 mH 4 mH
0

1 mH 1,50
2 mH 1,90 2,20
3 mH 2,80 3,70 4,20
4 mH 3,50 4,80 4,70 4,50

We will number the switches within a single column as 1, 2, 3, 4, respectively, which could
correspond to 1H, 2H, 3H, 4H, or 0.1H, 0.2H, 0.3H, 0.4H, or another column. The switch combi-
nations within a column behave the same for all columns, which allows us to construct a general
model applicable to each column.

The majority of switch combinations lead to simple summation of individual resistances: com-
binations such as 1+3, 1+4, 2+3, and 2+4 within the same column are summed additively.
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Problems arise only for the combinations 1+2 and 3+4 in all columns.

3.1 Statistical Model

Let’s make a model for switches 1H and 2H (The model for 3H and 4H will be the same, only with
different coefficient values), this model should describe the interaction because at simultaneous
switching on the total resistance differs from the sum of individual resistances.

y = a0 + a1x1 + a2x2 + a12x1x2 (1)

Where:

• y is the measured resistance,

• x1 and x2 are 0 for OFF and 1 for ON for the first and second switches respectively,

• a0 is the intercept (baseline resistance),

• a1 is the effect of switch 1H,

• a2 is the effect of switch 2H,

• a12 is the interaction effect between the two switches.

The data from the experiments can be represented in matrix form. The design matrix X and
the response vector Y are given by:

X =


1 0 0 0
1 1 0 0
1 0 1 0
1 1 1 1

 , Y =


0.7
31.3
45.4
56.8


The general formula for calculating the coefficients is:

α̂ = (XTX)−1XTY =


a0
a1
a2
a12

 =


0.7
30.6
44.7
−19.2

 (2)

Thus, the final statistical model is:

y = 0.7 + 30.6x1 + 44.7x2 − 19.2x1x2 (3)

This model demonstrates the negative interaction effect. This occurs because the total resis-
tance, when both switches are ON, is lower than the sum of the individual resistances, indicating
that the interaction term reduces the overall resistance compared to a simple additive (linear)
model.
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Figure 2: Comparison of different statistical models with marked experimental points.

Figure 2 shows that the constant model is too simplistic, assuming no effects from the activation
of switches. The linear model shows independent, linear effects of each factor, without interactions
or curvature. This model works for combinations with linear additive behaviour: 1+3, 1+4, 2+3,
2+4. The model with interaction gives the most accurate representation, providing a more complex
but realistic response surface.

3.2 Physical Model

Let’s begin reconstructing the electrical circuit with the simplest system of two switches, where
the resistances are simply added together when both switches are activated. For example, consider
switches 1H and 3H.:

Figure 3: Scheme for the two-switch system, with simple resistance summing when both switches
are turned on simultaneously. Ω○ represents an ohmmeter.

• (0, 0) → Y0 = R0 = 0.7 Ω;
When both switches are off, the result resistance is the offset R0.

• (1, 0) → Y1 = R0 +R1 = 31.3 Ω;
When the first switch is on and the second is off, R1 and R0 are connected in series.

• (0, 1) → Y2 = R0 +R3 = 56.7 Ω;
When the third switch is on and the first is off, R3 and R0 are connected in series.

• (1, 1) → Y3 = R0 +R3 +R1 = 87.6 Ω;
When both switches are on, R3, R1 and R0 are connected in series. The model’s prediction
for Y3 = 31.3 + 56.7− 0.7 = 87.3 Ω, with an error of 0.3 Ω (we consider an error tolerable if
it is smaller than the offset of 0.7 Ω).
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The main challenge is to design a circuit with two switches that explains the nonlinear behavior
of the two switch systems 1 and 2 or 3 and 4.

The combination of switches 1+2 can be explained by this scheme:

Figure 4: Scheme for the two-switch system with non-additive interaction, switches 1 and 2. An
additional resistor was assigned number 5 to avoid confusion with the resistors associated with
switches 3 and 4. Ω○ represents an ohmmeter.

• (0, 0) → Y0 = R0 = 0.7 Ω;
When both switches are off, the result resistance is the offset R0.

• (1, 0) → Y1 = R0 +R1 = 31.3 Ω;
When the first switch is on and the second is off, R1 and R0 are connected in series.

• (0, 1) → Y2 = R0 +
R2(R1+R5)
R1+R2+R5

= 45.4 Ω;
When the second switch is on and the first is off, R1 and R5 are connected in series, and R2

is connected in parallel with (R1 +R5).

• (1, 1) → Y3 = R0 +R1 +
R2R5

R2+R5
= 56.8 Ω;

When both switches are on, R2 and R5 are connected in parallel, and R1 is in series.

The solution for this system: R0 = 0.7 Ω, R1 = 30.6 Ω, R2 = 170.5 Ω, R5 = 30 Ω

The same logic applies to the combination of switches 3 and 4, it is only necessary to insert
the values from the table.

3.3 Link Between the Two Models

Having both statistical and physical models, we can link them by deriving each coefficient in the
statistical model using resistances from the physical model:

y = a0 + a1x1 + a2x2 + a12x1x2

y = 0.7 + 30.6x1 + 44.7x2 − 19.2x1x2
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a0 = Y0 = R0 = 0.7

a1 = Y1 − Y0 = R1 = 30.6

a2 = Y2 − Y0 =
R2 (R1 +R5)

R1 +R2 +R5

= 44.7

a12 = (Y3 − Y0)− ((Y1 − Y0) + (Y2 − Y0)) =
R2R5

R2 +R5

− R2 (R1 +R5)

R1 +R2 +R5

= −19.2

4 System of a random combination of switches

First, let’s look at all the possible combinations for each of the columns

H Ω
1,2,3 113,50
1,2,4 123,70
1,3,4 124,20
2,3,4 138,60
1,2,3,4 149,50

0.1 H Ω
1,2,3 48,80
1,2,4 53,40
1,3,4 56,70
2,3,4 62,00
1,2,3,4 66,20

10 mH Ω
1,2,3 6,50
1,2,4 7,10
1,3,4 7,00
2,3,4 7,70
1,2,3,4 8,30

mH Ω
1,2,3 4,50
1,2,4 5,30
1,3,4 5,20
2,3,4 5,70
1,2,3,4 6,00

The already measured combinations (1+2) and (3+4) sum correctly (additively) with other
switches. For instance, if switches 1, 2, and 3 are turned on, the result corresponds to the sum of
the separate resistances of combinations (1+2) and 3. This simplifies the task of reconstructing
the scheme significantly, as we only face issues with the 2-switch systems, while combinations of
multiple switches behave well (i.e., simple additive summation).

Now, on the contrary, let’s look at how the combinations between the columns behave within
the selected row.

Combination Ω
0.1H, 10mH 13,10
1H, 10mH 32,80
1H, 0.1H 42,10

1H, 0.1H, 10mH 43,70
1H, 0.1H, 10mH, 1mH 44,40

Combination Ω
0.2H, 20mH 19,20
2H, 20mH 48,10
2H, 0.2H 61,70

2H, 0.2H, 20mH 64,20
2H, 0.2H, 20mH, 2mH 65,20

Combination Ω
0.3H, 30mH 31,20
3H, 30mH 60,20
3H, 0.3H 85,00

3H, 0.3H, 30mH 88,00
3H, 0.3H, 30mH, 3mH 89,70

The column resistances sum up correctly (additively). Therefore, we can develop the schemes
for each column separately and then connect them in series.

For final check we measure resistances of random combinations including all rows and columns.

Combination Ω
0.4H, 40mH 36,70
4H, 40mH 71,00
4H, 0.4H 100,00

4H, 0.4H, 40mH 103,40
4H, 0.4H, 40mH, 4mH 106,00

Combination Ω
0.2H, 10mH 18,40
3H, 10mH 58,70
3H, 0.2H 73,20

3H, 0.2H, 10mH 74,80

Combination Ω
40mH, 10mH, 2H 61,30

20mH, 30mH, 0.2H, 0.3H, 2H, 3H 150,40
0.1H, 20mH, 2H, 0.4H 91,00

10mH, 20mH, 0.1H, 0.2H, 1H, 2H 80,40
30mH, 40mH, 0.3H, 0.4H, 3H, 4H 143,40
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Comparing the resulting resistances with individual resistances and pair resistances, a pat-
tern can be deduced: non-linearity appears only for pairs 1+2 and 3+4, all other connections
simply sum the resistances. That is, knowing all individual resistances and knowing the mea-
sured resistances of pairs 1+2 and 3+4 for each column - we can calculate the resistance of any
combination of resistors. If switches 1 and 2 or 3 and 4 are present together in the combination
- it is necessary not to sum up their individual resistances, but to take the measured pair resistance.

Finally, we can build the scheme for the entire device:

Figure 5: Scheme of the entire device. Indices 0.1,0.2,0.3... correspond to the column with tenths H,
”...” corresponds to switches in the other columns, connected in series. Ω○ represents an ohmmeter.

5 Next Steps

As the next step in our investigation, we will test a second inductance box to assess the applicability
of the physical model developed from the first box. This will help determine whether the non-linear
resistance behavior observed is consistent across different boxes.

6 Conclusion

Resistances were measured for individual switch activation, two-switch activation, and random
activation of multiple switches. The statistical model was created to predict the resistance of
every possible combination, knowing the individual resistances and the ”nonlinear pairs” (1+2 and
3+4) resistances. The physical model was developed, and the proposed scheme of switches and
resistances explains the nonlinear behavior of the device’s resistance. The statistical and physical
models were linked by deriving each coefficient of the statistical model using the resistances in the
physical model.

A possible electrical scheme for the device was created. There are countless possible connections
of different numbers of resistors that could yield the same measurement results, but the simplest
connection was chosen from the available options, guided by Occam’s razor principle.
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